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In the Victorian era, Sir Francis Galton showed that ‘when dealing with the transmission of stature from
parents to children, the average height of the two parents, y is all we need care to know about them’
(1886). One hundred and twenty-two years after Galton’s work was published, 54 loci showing strong
statistical evidence for association to human height were described, providing us with potential genomic
means of human height prediction. In a population-based study of 5748 people, we find that a 54-loci
genomic profile explained 4–6% of the sex- and age-adjusted height variance, and had limited ability to
discriminate tall/short people, as characterized by the area under the receiver-operating characteristic
curve (AUC). In a family-based study of 550 people, with both parents having height measurements, we
find that the Galtonian mid-parental prediction method explained 40% of the sex- and age-adjusted
height variance, and showed high discriminative accuracy. We have also explored how much variance a
genomic profile should explain to reach certain AUC values. For highly heritable traits such as height, we
conclude that in applications in which parental phenotypic information is available (eg, medicine), the
Victorian Galton’s method will long stay unsurpassed, in terms of both discriminative accuracy and costs.
For less heritable traits, and in situations in which parental information is not available (eg, forensics),
genomic methods may provide an alternative, given that the variants determining an essential proportion
of the trait’s variation can be identified.
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Introduction
Height is a classical example of an inherited human trait.

More than a 100 years ago, Francis Galton used height data

to study the resemblance between parents and offspring,

concluding that ‘when dealing with the transmission of

stature from parents to children, the average height of the

two parents, y is all we need care to know about them’1
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(Figure 1). Later on, height was among the first phenotypes

studied using the polygenic model of inheritance,2 which

bridged the gap between Galtonian and Mendelian

genetics. Numerous studies after the pioneering work of

Galton showed that height is one of the most heritable

human phenotypes. Typically, the proportion of the sex-

and age-adjusted variance of height attributable to familial

factors (heritability) is estimated as 80%. Most of this

heritability may be owing to genetic factors because, for

height, the non-genetic causes of sib resemblance are

usually negligibly small.3 Until recently, however, little was

known about the genes involved in the normal variation of

height in human populations.

One hundred and twenty-two years after Galton’s paper,

and 7 years after the initial sequencing of the human

genome,4 three papers described 54 loci showing strong

statistical evidence for association with height,5 –7 poten-

tially providing us with genomic means of human height

prediction. Here, we investigate the potential of the state-

of-the-art genomic approach to predict human height and

compare it with the potential of the 122-year-old Victorian

method of Galton.

Materials and methods
Study populations

The Rotterdam Study8 is a prospective cohort study that

started in 1990 in Ommoord, a suburb of Rotterdam,

among 10994 men and women aged 55 and over. The

main objective of the Rotterdam Study is to investigate the

prevalence and incidence of and risk factors for cardio-

vascular, neurological, locomotor and ophthalmological

diseases in the elderly. Baseline measurements were

obtained between 1990 and 1993. All participants were

subsequently examined in follow-up examination rounds

every 2–3 years. Heights were measured at baseline. The

Rotterdam Study has been approved by the institutional

review board (Medical Ethics Committee) of the Erasmus

Medical Center and by the review board of the Netherlands

Ministry of Health, Welfare and Sports. For this study, we

used the data on 5748 participants for whom GWA and

height data were available.

The Erasmus Rucphen Family (ERF) study9 is a family-

based study of a young genetically isolated population

studied within Genetic Research in the Isolated Popula-

tions program.10 The ERF study includes over 3000

participants descending from 22 couples living in the

Rucphen region in the nineteenth century. All descendants

were invited to visit the clinical research center in the

region, where they were examined in person, including

height measurements. The ERF study has been approved by

the Medical Ethics Committee of the Erasmus MC. In this

study we included 550 participants together with both

parents for whom height measurements were complete.

Genotyping and imputations

In the Rotterdam Study, genome-wide SNP genotyping was

performed using Infinium II assay on the HumanHap550

Genotyping BeadChips (Illumina Inc., San Diego, CA, USA).

Approximately 2.5 million SNPs were imputed using the

HapMap CEU population (release 22) as reference. The

imputations were performed using MACH software11

(http://www.sph.umich.edu/csg/abecasis/MACH/). The quality

of imputations was checked by contracting imputed and

actual genotypes at 78844 SNPs not present on Illumina

550K for 437 individuals for whom these SNPs were

directly typed using Affymetrix 500K. Using the ‘best

guess’ genotype for imputed SNPs, the concordance rate

was 99% for SNPs with the R2 (ratio of the variance of

imputed genotypes to the binomial variance) quality

measure greater than 0.9; concordance was still high

(94%) when R2 was between 0.5 and 0.9. Out of the 54

SNPs used in this study, 31 were directly typed and the rest

were imputed. The median R2 was 0.999 and only two SNPs

had 0.87oR2o0.9 (Supplementary Table 1).

In the ERF study, genome-wide SNP genotyping was

performed using Illumina HumanHap300 (1200 indivi-

duals), HumanHap370 (100 individuals) and Affymetrix

250K Nsp array (B200 individuals). The imputations

followed the Rotterdam Study protocol closely.

Selection of 54 SNPs used in the study

Of the 54 loci influencing human height shown in

Supplementary Table 1, 16 were published by Weedon

et al.,5 11 by Lettre et al.6 and 27 by Gudbjartsson et al.7 Of

the 59 markers reported to be strongly associated with

height in these three studies, five were mapped within the

same chromosome region. For these loci, we picked up

markers with the lowest P-value.
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Figure 1 Rate of regression in hereditary stature (Plate IX, figure a
from Galton1 with superimposed data from the ERF study).
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Testing within- and between-loci additivity

All analyses were performed using R v 2.7.0 (http://www.

r-project.org). To test the deviation from the within-locus

additive model, we used the linear model height Bbs
sexþ ba ageþ bAB PABþ bBB PBB, where PAB and PBB are the

estimated probabilities of the AB and BB genotypes,

respectively. This model was contrasted to the model

under additive restriction bBB¼2 bAB using the likelihood

ratio test (LRT; twice the difference between maximum log-

likelihood of these models is asymptotically distributed as

w1
2). Multiple testing was accounted for using Bonferroni

correction. Similarly, we tested the deviation from

between-loci additivity using the model height Bbs sexþ ba
ageþ bS1 DS1þ bS2 DS2þ bI DS1 DS2, in which DS1 and DS2

were the estimated allele doses at two loci (D¼PABþ2PBB)

and bI is the interaction term. This model was contrasted to

the no interaction model (height Bbs sexþ ba ageþ bS1
DS1þ bS2 DS2); again, LRT on one degree of freedom was

performed for comparison.

Construction of predictive profiles

The non-weighted allelic profile was computed as the sum

of the estimated doses of the height-increasing allele in the

genotype of a person. The weighted allelic profile was

constructed as a weighted allelic sum with weight propor-

tional to the allelic effect estimated using our data in a

multivariable model including all 54 SNPs.

To construct the Galtonian mid-parental profile, we first

estimated height residuals from the model heightBsexþ age.

For every person for whom both paternal and maternal

heights were available, we constructed the ‘predictive

profile’, which was defined as the average of the parental

height residuals. This method resembles the method of

Galton, very closely1 with the exception that he did not

adjust for age.

The hypothetical predictor explaining a certain propor-

tion (Ve) of sex- and age-adjusted height variance was

constructed as a sum of the person’s height plus a normally

distributed random number, with mean zero and variance

equal to Vh(1�Vi)/Ve, where Vh is the variance of height. In

any analyses involving simulated profile, we used at least a

100 simulations per point of interest.

Estimating proportion of variance explained by a
profile and discriminative accuracy (AUC)

The proportion of the variance of sex- and age-adjusted

height explained by a profile was estimated using the linear

regression model as (1�Vi/Ve), where Vi is the trait’s

variance in the model including the profile as a predictor,

and Ve is the variance in the model excluding the profile as

a predictor.

The receiver-operating characteristic (ROC) curve repre-

sents the combinations of sensitivity and specificity for

each possible cutoff value of the continuous test result that

can be considered to define positive and negative test

outcomes. The area under the receiver-operating character-

istic curve (AUC) indicates the discriminative accuracy of a

continuous test.12 The AUC ranges from 0.5 (total lack of

discrimination) to 1.0 (perfect discrimination) and is

independent of the prevalence of the condition of

interest.13 The AUC can be basically considered as the

probability that the test correctly identifies the subject

possessing the characteristics of interest (eg, ‘very tall’)

from a pair in whom one has and one does not have this

characteristic. An AUC of 0.95 means that 95% of the pairs

are correctly classified, whereas a test with an AUC of 0.50

is non-discriminative – as accurate as tossing a fair coin.

AUC was computed as the area under the function

relating sensitivity to 1–specificity (ROC curve). To derive

the ROC curve, we varied the threshold determining

‘positive test result’ from a minimal to a maximal possible

test (profile) value. At a given threshold, sensitivity was

computed as the proportion of people who test positive

among those who do indeed possess the characteristic of

interest; the specificity was computed as the proportion of

those who test negative among those who do not possess

the characteristic of interest.

Results
In all analyses, we used sex- and age-adjusted height as an

outcome. We have compared the predictive potential of

different methods by contrasting the proportion of the

explained height variance explained and AUC. The latter

measures the accuracy of the model to discriminate

between alternative outcomes (in height context, eg, ‘very

tall’ or not).

The data from the population-based Rotterdam Study8

(5748 individuals with complete height, sex, age and

genomic data) were used to estimate the predictive

potential of the genomic method. In the Rotterdam Study,

34 of the 54 SNPs were significantly associated with height

at Po0.05. Only for two SNPs the direction of (non-

significant) height association inconsistent with that

reported by the original studies (Supplementary Table 1).

Before estimating the potential of the genomic profile to

predict human height, we also tested whether the 54 loci

deviated from the within- or between-loci additivity

assumption. After correction for multiple testing, we did

not find statistically significant evidence for between-loci

interactions (all nominal P40.001). Only one SNP

(rs4794665 located in the NOG-RISK region) showed

significant deviation from a within-locus additive model

after correction for multiple testing (corrected P¼0.0006,

see Supplementary Table 1).

The genomic profile, based on 54 recently identified loci,

was computed as the sum of the number of height-

increasing alleles carried by a person, similar to Weedon

et al.5 This profile explained 3.8% of the sex- and age-

adjusted variation of height in the Rotterdam Study

(Figure 2a). We also estimated the upper explanatory limit
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of the 54-loci allelic profile by defining the profile as a

weighted sum of height-increasing alleles, with weights

proportional to the effects estimated in our own data using

a multivariable model (Supplementary Table 1). Such a

weighted genomic profile explained 5.6% of the variation

of height in the Rotterdam Study. The mean difference

between people having the ‘highest’ and ‘lowest’ 5% of the

genetic height score was 4.9 cm (Figure 2a, Table 1) (6.4 cm

when using the weighted profile).

The ability of the genomic profile to predict a very

tall (belonging to the upper 5% of the distribution)

person was estimated using the AUC – a statistic routinely

used to assess the predictive ability of a test in

clinical practice.12–15 The AUC for the 54-loci genomic

profile was 65% (68% for the weighted profile; Table 1 and

Figure 3a).

Next, to estimate the predictive power of the Galtonian

method, we used the family-based ERF study,9 in which

parental height data were available for 550 participants. To

construct the Galtonian predictive profile for every person

for whom both paternal and maternal heights were

available, we computed the average of the parental height

residuals. We found that the proportion of height ex-

plained by the Galtonian mid-parental profile was 40%

(Figure 2b) – which is an order of magnitude higher than

the result achieved using the 54-loci genomic profile. The

mean difference between people having the ‘highest’ and

‘lowest’ 5% of the mid-parental predictive profile reached

an impressive 17.68 cm (Figure 2b, Table 1). Moreover, the

Galtonian prediction performed much better when dis-

criminating very tall people (AUC¼84%; Table 1 and

Figure 3a).

We have addressed the question whether combining

the parental height information with genotypic profile

leads to better prediction. The analysis was restricted to 270

members of the ERF study for whom both parental

phenotype and genetic data were available. Both mid-

parental value (P¼10�42) and the non-weighted genomic

profile (P¼0.01) were significantly associated with the

height of an offspring. Not surprisingly, the genomic

profile was strongly correlated (Pearson’s r¼ 0.22,

P¼0.0003) with the mid-parental height value. Table 1

shows that although statistically significant, considering

the genomic profile added little to the prediction based on

mid-parental values only (proportion of variance explained

increased by B1.3%, and AUCs stayed virtually the same).

Finally, we addressed the question of how much variance

a genomic profile should explain to achieve a certain AUC

value.15 For this, using the Rotterdam Study data, we

simulated profiles explaining different proportions of trait

variance, and evaluated AUCs for these profiles (Figure 3b).

For every evaluated point, one hundred simulations were

performed. The simulations have shown that when one

aims to predict a person having extreme (1% highest/

lowest) value, a predictive profile explaining as little as

17% of the trait’s variance is sufficient to achieve an AUC

of 80% (which may generally be considered as good for

screening purposes), and a profile explaining 53% to

achieve an excellent AUC of 95%. On the other hand, a

good prediction of a person from the higher/lower 5%

trait’s distribution requires a profile explaining 25%, and

an excellent prediction of such a person requires a profile

already explaining 68% (Figure 3b).

It can be expected that if all loci controlling human

height are known, a genomic profile can explain up to 80%

of height variance. Under this scenario, the mean differ-

ence between people having the ‘highest’ and ‘lowest’ 5%

of such a hypothetical profile was 23.38±0.005 cm (typical

realization is presented in Figure 2c). As expected from the

high proportion of explained variance, the discriminative

accuracy of this hypothetical profile was very high

(AUC¼97.4±0.3%, Table 1 and Figure 3a).
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Figure 2 Observed sex- and age-adjusted height vs different predictive profiles. (a) Rotterdam Study, prediction with the genomic profile
constructed from 54 loci, (b) ERF study, Galtonian prediction using mid-parental height values and (c) Rotterdam Study, a hypothetical profile
explaining 80% of height variance. Red lines: mean residual height in people coming from top and bottom 5% of the profile distribution. Blue line:
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Discussion
In this work, we compared genomic and Victorian

approaches to predict human height. In our data, the

54-loci genomic profile explained 4–6% and Victorian

Galton’s mid-parental values explained 40% of the height

variance. Adding genomic information to the mid-parental

values provided only a small (1.3%) increase in the

proportion of variance explained.

In forensics and human medicine, the question of binary

classification of a person (eg, ‘very tall’ or not) on the basis

of some profile (score) is of high interest. We have

proposed earlier that the usefulness of a genomic profile

associated with a binary outcome should be evaluated by

the area under the ROC curve.14,15 In medicine, ROC

analysis has been extensively used in the evaluation of

diagnostic tests. We show that the 54-loci genomic profile

had a relatively low discriminative accuracy (AUC¼65%

for a person falling into 5% tallest). This value, however, is

promising for example, approximately the same AUC is

reached when predicting the risk of coronary heart disease

using low-density lipid levels.16 We estimate that to

achieve an AUC of 80% using height genomic profiling,

we need to explain at least three times the amount of

variance currently explained with the available 54 loci. At

the same time, the cheap and straightforward Galtonian

approach showed an AUC of 84% when predicting 5% of

the tallest person. The latter discriminative accuracy of

84% is better than that of many tests used in the clinical

context, such as the Framingham risk scores that predict

coronary heart disease based on traditional risk factors

such as blood pressure, lipid levels and smoking status.16

However, the Galtonian prediction requires knowledge of

parental height, which is not always available in applica-

tions such as forensics.

Our height study provides a strong example of a trait

for which, at the current stage, a simple prediction based

on phenotype of relatives clearly outperforms sophisti-

cated genomic prediction. Would this hold for other

phenotypes? The proportion of offspring’s phenotypic

variation, which can be explained by a mid-parental

phenotypic value, is (h2)2/2, where h2 is the heritability

of the trait.17 In a recent study, we have estimated that 11

Table 1 Proportion of human height variance explained and discriminative accuracy of different predictive profiles

AUC discriminating

Profile Population N %Variance explained Top 50% Top 5% Top 1% D5,95, cm

54-loci genomic profile RS 5748 3.8 58.1 64.8 63.4 4.95
Hypothetical profile RS 5748 80.0 93.3±0.2 97.4±0.3 98.8±0.2 23.4±0.01
Galtonian mid-parental profile ERF 550 40.1 77.3 83.6 97.4 17.68
Galtonian mid-parental profilea ERF 257 44.9 78.7 88.3 99.9 21.18
Galtonian+54-locia ERF 257 46.2 80.0 88.9 98.2 21.28

AUC, area under the receiver-operating characteristic curve; D5,95, difference between mean height of people coming from the top 5% and bottom
5% of the profile distribution; RS, population-based Rotterdam Study; ERF, Erasmus Rucphen Family study.
aERF participants with parental and genotypic information (n¼257).
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SNPs explain 3–5% of the variance of total cholesterol, and

similar figures were obtained for high- and low-density

lipoprotein cholesterol and triglycerides.18 These traits

typically exhibit about 30% heritability. Therefore, the

Galtonian prediction cannot explain more than 5% of the

trait’s variance. Thus, for lipid levels the genomic

prediction is already doing as good as (or as bad as) the

Galtonian one. However, the genomic profiling, unlike

the Galtonian, still has the potential to improve, as more

loci affecting the phenotype of interest are discovered.

Although the upper limit for genomic profiling is

determined by heritability, the genetic architecture of the

trait is a very important factor to consider in estimating the

potential of predictive testing.15 For example, for iris color, a

single major locus explains the vast proportion of variance,

and the AUC of 80% is reached when predicting blue or

brown iris color using only three SNPs.19 However, for traits

such as blood pressure, only a few loci explaining a very

small proportion of variance each are known and, for such

traits, the prospects of genomic profiling are much worse.

It can be expected that once all loci involved in human

height are shown, the discriminative accuracy of the

genomic approach may surpass that of the Galtonian

approach. However, it will be a tall order to find all these

variants, at least using the current methodology consisting

of (meta-analyses) of genome-wide association studies,

tailored to capture common variants. The 54 common

variants discovered by now, probably already include those

with the largest effect sizes. Merely because the variants with

the larger effect sizes are most easily captured, the detection

of new height genes will require progressively bigger sample

sizes (eg, to detect a locus explaining 0.1% of the variance at

genome-wide significance Po5�10�8 with a power of 80%,

one would need to study 40000 people, whereas to detect a

locus explaining 0.01%, one would need 400000 people).5

As noted by Galton, ‘stature is not a simple element, but a

sum of accumulated lengths and thicknesses of more than a

hundred of bodily partsy The beautiful regularity in the

statures of a population y is due to the number of variable

elements the stature is the sum’.1 A detailed analysis of the

factors controlling these endophenotypes is likely to be

necessary to discover new loci and to make genetic findings

useful for applications in forensics and medicine.

We conclude that whereas the genomic approach is

potentially more powerful than Victorian Galton’s

method, the latter will long stay unsurpassed in terms of

both discriminative accuracy and costs, when the trait in

question is highly heritable and the parental phenotype is

usually available. For less heritable traits, such as lipid

levels, and in situations when parental information is not

available (eg, forensics), genomic methods may provide an

alternative, given the variants determining an essential

proportion of variation can be identified.
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